Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
ACS Omega ; 9(14): 16842-16850, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38617663

RESUMEN

The current work aims to synthesize new amphipathic compounds, TGHA and PGHA, and investigate their demulsification performance (DP) in water-in-crude oil emulsions. Their chemical structures, thermal stability, interfacial activity, and micelle formation were investigated by different techniques. The bottle test method was used to investigate the effect of demulsifier concentration, water content, temperature, and demulsification time (DT) on the DP of TGHA and PGHA compared to a commercial demulsifier (CD). The results indicated that these parameters have a noticeable impact on the DP of TGHA and PGHA. The results also showed that TGHA exhibited higher DP than PGHA at all investigated parameters, which could be explained by increasing its hydrophobicity due to lower oxyethylene units in its structure than PGHA. An increase in these units means increased hydrophilicity, which led to obstruction of PGHA molecule diffusion in crude oil as a continuous phase. Moreover, TGHA gave a comparable DP with CD, as it gave a higher DP and shorter DT than CD at a higher water content (50%), while the latter achieved the highest DP and the shortest DT at a low water content (10%).

2.
Chem Biodivers ; : e202301870, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38538544

RESUMEN

New sets of functionalized thiazolidinone and thiadiazole derivatives were synthesized, and their cytotoxicity was evaluated on HepG2, MCF-7, HTC-116, and WI38 cells. The synthetic approach is based on the preparation of 4-(4-acetamidophenyl)thiosemicarbazide (4) and their thiosemicarbazones 5a-e, which are converted to the corresponding thiazoldin-4-one compounds 6a-e upon cyclization with ethyl bromoacetate. The thiadiazole compounds 9 and 12 were obtained by reacting 4-(4-acetamidophenyl)thiosemicarbazide with isothiocyanates and/or ethyl 2-cyano-3,3-bis(methylthio)acrylate, respectively. The thiazolidinone compounds 6c and 6e exhibited strong cytotoxicity against breast cancer cells, with an IC50 (6.70±0.5 µM) and IC50 (7.51±0.8 µM), respectively, very close to that of doxorubicin (IC50: 4.17±0.2 µM). In addition, the anti-cancer properties of the tested thiazolidinone and thiadiazole scaffolds were further explored by the molecular docking program (MOE)-(PDB Code-1DLS). Compounds 5d, 5e, 6d, 6e, and 7 have the best binding affinity, ranging from -8.5386 kcal.mol-1 to -8.2830 kcal.mol-1.

3.
Chem Biodivers ; : e202400313, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38467571

RESUMEN

The aim of this study involves the synthesis novel thiophene analogues that can be used as anticancer medications through a strategic multicomponent reaction connecting ethyl 4-chloroacetoacetate (1), phenyl isothiocyanate, and a series of active methylene reagents, including ethyl acetoacetate (2), malononitrile, ethyl cyanoacetate, cyanoacetamide 6a-c, N-phenyl cyanoacetamide derivatives 13a-c, and acetoacetanilide derivatives 18. This reaction was facilitated by dry dimethylformamide with a catalytic quantity of K2CO3. The resultant thiophene derivatives were identified as 4, 8a-b, 9, 12a-d, 15a-c, and 20a-b. Further reaction of compound 4 with hydrazine hydrate yielded derivative 5, respectively. When compound 1 was refluxed with ethyl 3-mercapto-3-(phenylamino)-2-(p-substituted phenyldiazenyl)acrylate 10a-e in the presence of sodium ethoxide, it produced thiophene derivatives 12a-d. Comprehensive structural elucidation of these newly synthesized thiophene-analogues was accomplished via elemental and spectral analysis data. Furthermore, the study delves into the cytotoxicity of the newly synthesized thiophenes was evaluated using the HepG2, A2780, and A2780CP cell lines. The amino-thiophene derivative 15b exhibited an increased growth inhibition of A2780, and A2780CP with IC50 values 12±0.17, and 10±0.15 µM, respectively compared to Sorafenib with IC50 values 7.5±0.54 and 9.4±0.14. This research opens new avenues for developing thiophene-based anticancer agents.

4.
Environ Geochem Health ; 46(3): 72, 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38367120

RESUMEN

The dam failure of the Córrego do Feijão Mine (CFM) located in Minas Gerais State, Brazil, killed at least 278 people. In addition, large extensions of aquatic and terrestrial ecosystems were destroyed, directly compromising the environmental and socioeconomic quality of the region. This study assessed the pollution and human health risks of soils impacted by the tailing spill of the CFM dam, along a sample perimeter of approximately 200 km. Based on potential ecological risk and pollution load indices, the enrichments of Cd, As, Hg, Cu, Pb and Ni in soils indicated that the Brumadinho, Mário Campos, Betim and São Joaquim de Bicas municipalities were the most affected areas by the broken dam. Restorative and reparative actions must be urgently carried out in these areas. For all contaminated areas, the children's group indicated an exacerbated propensity to the development of carcinogenic and non-carcinogenic diseases, mainly through the ingestion pathway. Toxicological risk assessments, including acute, chronic and genotoxic effects, on people living and working in mining areas should be a priority for public management and mining companies to ensure effective environmental measures that do not harm human health and well-being over time.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Niño , Humanos , Suelo , Metales Pesados/toxicidad , Metales Pesados/análisis , Ecosistema , Brasil , Monitoreo del Ambiente , Contaminación Ambiental/análisis , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisis , Medición de Riesgo
5.
Environ Monit Assess ; 195(12): 1467, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37962670

RESUMEN

The aim of the work was to establish the effect of anthropogenic activities and seasonality on physico-chemical parameters and heavy metal levels of River Yala (RY) within RY Basin of Lake Victoria (LV), as well as the associated ecological risks. Analyses were done on the collected samples in order to establish the levels of EC, pH, DO, temperature, conductivity, turbidity, acidity, alkalinity, BOD, COD, DOC, TOC and heavy metals (Cu, Fe, Pb, Mn, Zn, Cr and Cd) in RY water and sediments adjacent to Agricultural Farms during dry and wet seasons. The levels in terms of µg/mL, µS/cm (EC), NTU (turbidity) of analyzed parameters in the Agricultural Farms in water ranged from 0.01±0.00 to 121.75±15.23 (Upstream pristine sources of RY - S), 0.02±0.01 to 184.83±23.43 (Nandi Tea Estate and Kaimosi Agricultural Farms - N), 0.02±0.01 to 149.67±22.77 (Subsistence Farms - Sub), 0.02±0.01 to 209.33±18.09 (Lake Agro Limited Agricutural Farms and Yala Swamp - D) and 0.01±0.00 to 164.25±30.33 (Terminal of RY - T). The levels in µg/g of analyzed parameters in sediments ranged from 7.2±1.46 to 3342.8±538.7 (S), 9.12±0.2 to 4063.2±90.4 (N), 3.15±1.14 to 5998.5±588.4 (Sub), 2.03±0.76 to 4519.8±194.9 (D) and 2.13±0.75 to 5514.4±201.4 (T). The significant differences in the levels of analyzed parameters in water between dry and wet seasons were computed as; EC (+20.54 µS/cm), alkalinity (-2.85 µg/mL), DOC (+0.24 µg/mL), Fe (+0.58 µg/mL), Pb (+0.11 µg/mL), Zn (+0.07 µg/mL) and Cd (+0.01 µg/mL) while that for Mn in sediment samples was +163.8937 µg/g. The significantly (p ≤ 0.05) positive values indicated that wet season had more impact on the levels than dry season. There was positive correlation of zinc in water and sediments during dry and wet season. Chromium correlated positively in water and sediments during wet season. Copper and cadmium correlated negatively during dry and wet season while Mn only wet season. Results of geostatistical indices (CF, Cd, mCd, PLI, Er and RI) indicated that sediments located at regions N, D and T were highly contaminated with the heavy metals. However, a wetland at the mouth of Lake Victoria cleaned the water before it drained into the lake. Therefore, despite contamination of RY through anthropogenic activities, wetland mitigation protects LV from pollution by the river, indicating the important ecological and restorative functions played by wetlands.


Asunto(s)
Cadmio , Metales Pesados , Lagos , Ríos , Plomo , Monitoreo del Ambiente , Agua
6.
ACS Omega ; 8(46): 43955-43963, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-38027311

RESUMEN

This work deals with poly(ethylene terephthalate) waste as a precursor to synthesize new cross-linked poly(ionic liquids) (CLPILs). The newly synthesized CLPILs, VPCT-Cl and VPCT-AA, were used for magnetite nanoparticle surface modification, producing VCL/Fe3O4 and VAA/Fe3O4, respectively. The chemical structures of the CLPILs and surface-modified Fe3O4 were elucidated by Fourier transform infrared and X-ray diffraction. Additionally, the particle size, zeta potential (ζ), contact angle, and magnetic properties of VCL/Fe3O4 and VAA/Fe3O4 were investigated using different techniques. Furthermore, the performance of these nanoparticles for oil spill cleanup was evaluated using various influencing factors, e.g., the contact time and the Fe3O4/crude oil ratio. VCL/Fe3O4 and VAA/Fe3O4 showed excellent performance in oil spill cleanup. The data showed that the performance increased with the contact time and the Fe3O4 ratio. Furthermore, the reusability of VCL/Fe3O4 and VAA/Fe3O4 over four cycles was also explored. The reusability data indicated that reused VCL/Fe3O4 and VAA/Fe3O4 showed promising performance in oil spill cleanup.

7.
RSC Adv ; 13(38): 26366-26374, 2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37671343

RESUMEN

This work aims at synthesizing new cross-linked poly ionic liquids, CPILs, VIMDE-Cl and CPIL, VIMDE-TFA, utilizing polyethylene terephthalate waste as a precursor and applying them to magnetite nanoparticles surface modification, producing surface-modified magnetite nanoparticles, SMNPs, VDCL/MNPs, and VDTA/MNPs, respectively. The structures of VIMDE-Cl and VIMDE-TFA, VDCL/MNPs, and VDTA/MNPs, were verified using different techniques. The particle sizes of SMNPs, VDCL/MNPs, and VDTA/MNPs, were evaluated with a transmission electron microscope and dynamic light scattering. The compatibility of VDCL/MNPs and VDTA/MNPs with crude oil components and their response to an external magnet were also measured using contact angle measurements and a vibrating sample magnetometer. The data confirmed the formation of SMNPs, nanosized structure, compatibility with oil components, and response to an external magnet. For that, VDCL/MNPs and VDTA/MNPs were applied for oil spill recovery using different SMNP : crude oil weight ratios. The impact of contact time on SMNPs' performance was also evaluated. The data indicated increased performance with an increase in SMNPs ratio, reaching maximum values of 99% and 96% for VDCL/MNPs and VDTA/MNPs, respectively, at SMNPs : crude oil ratio of 1 : 1. According to the results, the optimal contact time was 6 min, resulting in 89% and 97% performance for VDCL/MNPs and VDTA/MNPs at 1 : 4 SMNPs : crude oil ratio.

8.
ACS Omega ; 8(24): 22245-22255, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37360479

RESUMEN

This work aims to synthesize and apply two novel amphiphilic ionic liquids (AILs) for the demulsification of water-in-crude oil (W/O) emulsions. To do that, 4-tetradecylaniline (TA) and 4-hexylamine (HA) were etherified using tetrethylene glycol (TEG) in the presence of bis(2- chloroethoxyethyl)ether (BE) as a cross-linker, yielding corresponding ethoxylated amines TTB and HTB. The obtained ethoxylated amines TTB and HTB were quaternized with acetic acid (AA), obtaining corresponding AILs TTB-AA and HTB-AA. The chemical structures, surface tension (ST), interfacial tension (IFT), and micelle size were investigated with various techniques. The performance of TTB-AA and HTB-AA to demulsify W/O emulsions was investigated using different influencing factors, including the demulsifier concentration, water content, salinity, and pH. Additionally, the obtained results were compared with a commercial demulsifier. The results indicated that the demulsification performance (DP) increased as the demulsifier concentration increased and the water content decreased; however, increased salinity slightly improved the DP. The data also showed that the highest DPs were achieved at a pH of 7, which suggested a change in the chemical structure of these AILs at a lower and higher pH due to their ionic structure. Furthermore, TTB-AA demonstrated higher DP than HTB-AA, which could be explained by its higher ability to reduce IFT due to a longer alkyl chain than that of HTB-AA. Furthermore, TTB-AA and HTB-AA showed significant DP compared to the commercial demulsifier especially with W/O emulsions at low water content.

9.
Molecules ; 27(10)2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35630715

RESUMEN

This work aimed to use abietic acid (AA), as a widely available natural product, as a precursor for the synthesis of two new amphiphilic ionic liquids (AILs) and apply them as effective demulsifiers for water-in-crude oil (W/O) emulsions. AA was esterified using tetraethylene glycol (TEG) in the presence of p-toluene sulfonic acid (PTSA) as a catalyst obtaining the corresponding ester (AATG). AATG was reacted with 1-vinylimidazole (VIM) throughout the Diels-Alder reaction, forming the corresponding adduct (ATI). Following this, ATI was quaternized using alkyl iodides, ethyl iodide (EI), and hexyl iodide (HI) to obtain the corresponding AILs, ATEI-IL, and ATHI-IL, respectively. The chemical structure, surface activity, thermal stability, and relative solubility number (RSN) were investigated using different techniques. The efficiency of ATEI-IL and ATHI-IL to demulsify W/O emulsions in different crude oil: brine volumetric ratios were evaluated. ATEI-IL and ATHI-IL achieved promising results as demulsifiers. Their demulsification efficiency increased as the brine ratios decreased where their efficiency reached 100% at the crude oil: brine ratio (90:10), even at low concentrations.


Asunto(s)
Líquidos Iónicos , Petróleo , Emulsiones/química , Yoduros , Líquidos Iónicos/química , Petróleo/análisis , Agua/química
10.
J Environ Manage ; 316: 115194, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35537267

RESUMEN

The oil spill represents one of the most important pollution sources for marine environments, that occurs due to tanker collisions, ship accidents, and platforms. Several techniques are used for treating oil spill disasters including chemical, physical, and biochemical. The use of chemicals, magnetite nanomaterials (MNMs) in particular, is one of the most applied techniques used for oil spill remediation due to their low cost, fast remediation, and reusability. This work aims to synthesize and use new ionic liquids (ILs) for the modification of MNMs surfaces to enhance their performance for crude oil uptake. For that, octadecylamine (OA) was reacted with epichlorohydrin (EH), followed by reaction with either diethylenetriamine (DT), or tetraethylenepentamine (TP) to obtain corresponding amines, OADT, and OATP, respectively. The produced amines were quaternized using acetic acid (AA) forming corresponding ILs, OADT-IL, and OATP-IL. The obtained ILs, OADT-IL, and OATP-IL were applied for modification of magnetite nanomaterials (MNMs) surface to obtain the surface-modified MNMs, DT-MNMs, and TP-MNMs, respectively. The surface-modified MNMs were characterized using different techniques including Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), and contact angle. The efficacy of DT-MNMs, and TP-MNMs for heavy crude oil uptake (EMU) was evaluated. Further, the factors affecting on the crude oil uptake including MNMs: heavy crude oil ratio, and contact time were also evaluated. The data exhibited that, the EMU relatively declined as the ratio of DT-MNMs, and TP-MNMs decreased. Even at low MNMs:crude oil ratio (1:50), DT-MNMs, and TP-MNMs displayed EMU 87%, and 90%, respectively, which means 1 g of either DT-MNMs, or TP-MNMs can uptake 45 g, or 43.5 g, respectively. These values are high as compared with other studies that reported the use of MNMs for oil spill cleanup. Furthermore, the data indicated that the EMU increased as the contact time increased, and reached maximum EMU of 98% for both MNMs samples after 10 min.


Asunto(s)
Líquidos Iónicos , Nanoestructuras , Transportadores de Anión Orgánico , Contaminación por Petróleo , Petróleo , Aminas , Óxido Ferrosoférrico , Contaminación por Petróleo/análisis
11.
Nanomaterials (Basel) ; 11(11)2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34835845

RESUMEN

Over the past few decades, there has been an increased trend for the use of natural compounds and their derivatives as alternatives to traditional chemicals and is due to their renewability, green character, and wide availability. This work aims to convert sodium alginate (S.ALG), a natural polysaccharide, into amides through its conversion to alginic acid (H.ALG). The formed H.ALG was esterified using methanol, followed by a reaction with octadecylamine (OA) and dodecylamine (DA) to produce corresponding amides, OA-ALG, and DA-ALG, respectively. The synthesized OA-ALG and DA-ALG were used as capping agents to further form hydrophobic magnetite nanoparticles (MNPs), OA-MNPs and DA-MNPs, respectively. The chemical structures, morphology, hydrophobicity, and magnetic properties of OA-MNPs and DA-MNPs were investigated using different instrumental techniques. Furthermore, the efficacy of as-synthesized MNPs as oil spill collectors were also evaluated using different ratios of MNPs:crude oil. From the analysis of results, the OA-MNPs and DA-MNPs exhibited high efficiency in the collection of oil spill even at low ratios of MNPs:crude oil.

12.
Molecules ; 26(20)2021 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-34684699

RESUMEN

In the last few decades, there has been an increasing trend for the usage of natural products and their derivatives as green and renewable oil-filed chemicals. Use of these compounds or their derivatives contributes to reducing the use of traditional chemicals, and enhances green chemistry principles. Curcumin (CRC) is one of the most popular natural products and is widely available. The green character, antioxidant action, and low cost of CRC prompt its use in several applications. In the present study, Curcumin was used to synthesize two new amphiphilic ionic liquids (AILs) by reacting with 1,3-propanesultone or bromoacetic acid to produce corresponding sulfonic and carboxylic acids, CRC-PS and CRC-BA, respectively. Following this, the formed CRC-PS and CRC-BA were allowed to react with 12-(2-hydroxyethyl)-15-(4-nonylphenoxy)-3,6,9-trioxa-12-azapentadecane-1,14-diol (HNTA) to form corresponding AILs, GCP-IL and GRB-IL, respectively. The chemical structures, surface tension, interfacial tension, and relative solubility number (RSN) of the synthesized AILs were investigated. The efficiency of GCP-IL and GRB-IL to demulsify water in heavy crude oil (W/O) emulsions was also investigated, where we observed that both GCP-IL and GRB-IL served as high-efficiency demulsifiers and the efficiency increased with a decreased ratio of water in W/O emulsion. Moreover, the data showed an increased efficiency of these AILs with an increased concentration. Among the two AILs, under testing conditions, GCP-IL exhibited a higher efficiency, shorter demulsification time, and cleaner demulsified water.


Asunto(s)
Curcumina/análogos & derivados , Emulsionantes/síntesis química , Emulsiones/química , Líquidos Iónicos/química , Aceites/química , Purificación del Agua/métodos , Curcumina/síntesis química , Interacciones Hidrofóbicas e Hidrofílicas , Tensoactivos
13.
Molecules ; 26(3)2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33499387

RESUMEN

Two novel amphiphilic polyethylene amine terephthalate have been prepared via the glycolsis of polyethylene terephthalate (PET). The product, bis (2-hydroxyethyl terephthalate) (BHET), was converted to the corresponding dialkyl halide, bis(2-chloroethyl) terephthalate (BCET), using thionyl chloride (TC). This dialkyl compound was used for alkylation of dodecyl amine (DOA) and tetraethylenepentamine (TEPA) or pentaethylenehexamine (PEHA) to form the corresponding polyethylene amine terephthalate, i.e., DOAT and DOAP, respectively. Their chemical structure, surface tension, interfacial tension (IFT), and dynamic light scattering (DLS) were determined using different techniques. The efficiency of the prepared polyethylene amine terephthalate to demulsify water in heavy crude (W/O) emulsions was also determined and found to increase as their concentrations increased. Moreover, DOAT showed faster and higher efficiency, and cleaner separation than DOAP.


Asunto(s)
Petróleo/análisis , Tereftalatos Polietilenos/química , Aminas/síntesis química , Aminas/química , Dispersión Dinámica de Luz , Emulsiones/química , Espectroscopía de Resonancia Magnética , Micelas , Estructura Molecular , Tereftalatos Polietilenos/síntesis química , Eliminación de Residuos/métodos , Espectroscopía Infrarroja por Transformada de Fourier , Tensión Superficial , Tensoactivos/síntesis química , Tensoactivos/química , Aguas Residuales/química
14.
RSC Adv ; 10(22): 13126-13138, 2020 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35492119

RESUMEN

Nano cobalt and porous zinc-cobalt oxide particles were synthesized using the concept of coordination compounds of the type [M(ii)L,L'] (where M(ii) = Co(ii) & Zn(ii) L= 4-hydroxy benzaldehyde and L' = piperazine) and were thoroughly characterized. Because the precursors are coordination compounds possessing specific geometry in the crystal lattice, uniform and appropriately sized homo- and heterometallic nanocrystals of Co3O4 and ZnO·Co3O4 were obtained after a thermal process. The homo and hetero composite particles were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD), FT IR spectroscopy and electrochemistry. The paramagnetic chemical shift of the methyl protons in DMSO due to the nanoparticles was studied by NMR spectroscopy, which indicated that the cobalt particles were ferromagnetic. The structural design modification and surface area of Co3O4 was improved by adding the ZnO component. DFT calculations were done to validate the nano structure. Supercapacitance ability of the nanoparticles was studied by cyclic voltammetry, and electrochemical calculations were performed to determine the microelectronic characteristics of the material. The specific capacitance was estimated at 207.3 and 51.1 F g-1 for the ZnO·Co3O4 and Co3O4 electrodes, respectively. Clearly, ZnO·Co3O4 exhibited a much higher specific capacitance than the Co3O4 nanocrystal, which was attributed to better conductivity and higher surface area. The capacitance activity showed multifold enhancement due to the porous nature of Zn oxide in the heterometallic nano ZnO·Co3O4 composite.

15.
Molecules ; 24(21)2019 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-31717813

RESUMEN

The ionic crosslinked 2-acrylamido-2-methylpropane sulfonic acid-co-acrylic acid hydrogel, AMPS/AA and its Ag and Fe3O4 composites were synthesized using an in situ technique. The surface charge, particle sizes, morphology, and thermal stability of the prepared AMPS/AA-Ag and AMPS/AA-Fe3O4 composites were evaluated using different analytical techniques and their adsorption characteristics were evaluated to remove the methylene blue cationic dye, MB, from their aqueous solutions at optimum conditions. Also, the same monomers were used to synthesize AMPS/AA microgel and its Ag and Fe3O4 nanocomposites, which were synthesized using the same technique. The AMPS/AA-Fe3O4 nanocomposite was selected as conventional iron-supported catalyst due to the presence of both Fe(II) and Fe(III) species besides its magnetic properties that allow their easy, fast, and inexpensive separation from the aqueous solution. It was then evaluated as a heterogeneous catalyst for complete MB degradation from aqueous solution by heterogeneous Fenton oxidation. It achieved a high rate of degradation, degrading 100 mg L-1 of MB during a short time of 35 min as compared with the reported literature.


Asunto(s)
Azul de Metileno/química , Nanocompuestos/química , Plata/química , Catálisis , Óxido Ferrosoférrico/química , Microgeles/química , Purificación del Agua/métodos
16.
Nanomaterials (Basel) ; 9(10)2019 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-31652612

RESUMEN

A facile method for synthesis of environmentally friendly magnetite nanomaterials (MNMs) was applied using hydrophobic biocomponents as capping and stabilizing agents. The biocomponents were extracted from Matricaria aurea (MAE) and Ochradenus baccatus (OBE) and used for the surface modification of MNMs to increase their dispersion efficiency on the collection of heavy crude oil spills. Synthesized MNM samples (MAE-MNMs and OBE-MNMs) were verified using thermogravimetric analysis; Fourier-transform infrared spectroscopy; transmission electron microscopy; dynamic light scattering, and vibrating-sample magnetometry. The application of these nanomaterials in the collection of oil spill showed that the MAE-MNMs and OBE-MNMs successfully collected 95% and 91% of the oil spill, respectively. These results support the potential use of these materials as eco-friendly composites for the successful collection of oil spills that might occur during offshore operations.

17.
Spectrochim Acta A Mol Biomol Spectrosc ; 220: 117101, 2019 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-31150923

RESUMEN

In this work, a new method for the preparation of ZnO hexagonal nanocrystals by using Sn(IV) as a catalyst was established, which resulted in tranformation of Porous to nanorod-like structures of ZnO. X-ray diffraction (XRD), Energy Dispersion X-ray analysis (EDX), and FT-IR measurements showed that all ZnO nanostructures were of hexagonal phase structure. Transmission electron microscopy (TEM) and scanning electron microscopic (FESEM) studies revealed that morphology of porous-like ZnO (100-200 nm) was converted into nanorod-like (length ~2 µm, diameter ~80 nm) structures upon addition of Sn(IV) as a catalyst. Spectroscopic studies demonstrated that the Zinc(II) compound yields high-quality porous ZnO which upon addition of Sn(IV) catalyst changes into crystalline hexagonal nanorods. The band gap of ZnO nanoparticles calculated employing UV spectrum was found to be 3.31 eV. Moreover, the photocatalytic degradation of methylene blue (MB) under UV light irradiation was performed, which confirmed higher photodegradation of hexagonal ZnO than porous ZnO nanostructures. Furthermore, DFT/TDDFT calculations of MB dye and the expected photodegradation product were also assessed, which were consistent with the kinetic studies. Additionally, zeta potential of the ZnO nanoparticles was measured in the dispersion medium of SDS surfactant which supported high stability of particles are in solution.

18.
Nanomaterials (Basel) ; 9(2)2019 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-30717327

RESUMEN

Superhydrophobic nanomaterials are promising in the important pursuit to alleviate the environmental pollution caused by the petroleum crude oil industry, especially to clean-up oil spills. In this work, asphaltenes isolated from crude oil were modified to act as capping agents during the synthesis of hydrophobic silica nanoparticles (HSNPs). The chemical structure, surface morphology, particle size, and surfaces charge of HSNPs were investigated. The contact angles of water droplets on HSNP film surfaces were measured to investigate their wetting properties. Finally, superhydrophobic sand and polyurethane sponge were prepared by coating them with HSNPs and applied in the cleanup of oil spills of viscous heavy Arabian crude oil.

19.
Int J Biol Macromol ; 127: 529-535, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-30654036

RESUMEN

Anti-amyloidogenic activity of safranal towards induced HSA amyloids has been observed using a variety of techniques including fluorescence, UV-visible, CD, DLS and microscopies. The HSA solution was pre-incubated at 65 °C for 120 h and, in between, the growth of amyloid fibrils, using ThT aggregation kinetics, was monitored at different time intervals. It was found that the amyloid fibril formation of HSA diminishes in presence of safranal and the inhibition was concentration dependent. The surface hydrophobicity of HSA amyloid fibrils also decreased in presence of safranal. The increased CR binding of HSA fibrils also decreased and high concentration of safranal causes the CR binding to resemble like that of native HSA. Both RLS and turbidity intensities were also in inverse relation to the safranal concentration. Safranal also has a good impact to protect the secondary structure of incubated HSA. From the electron microscopy it was seen that the fibrillar network of HSA amyloids gradually vanishes as the concentration of safranal increased. The largely decreased population of HSA aggregates in safranal containing solution as compared to the one without it also suggests the inhibition of formation of large fibrillar aggregates.


Asunto(s)
Amiloide/química , Crocus/química , Ciclohexenos/química , Albúmina Sérica Humana/química , Terpenos/química , Amiloide/ultraestructura , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Estructura Secundaria de Proteína
20.
Nanomaterials (Basel) ; 8(10)2018 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-30347724

RESUMEN

In this study, an easy, rapid and eco-friendly method was used successfully to synthesize the magnetite nanoparticles (MNPs). In order to fine-tune the synthesized MNPs for the collection of heavy crude oil spills, the particles' surface was modified with green hydrophobic biocomponents that were extracted from Anthemis pseudocotula (AP). The surface modified reaction carried with that of the MNPs in the presence of n-hexane extract (APH) resulted in the formation of APH-MNPs, while in the presence of chloroform extract (APC), resulted in APC-MNPs formation. The as-formed MNPs were thoroughly characterized using transmittance electron microscopy, X-ray powder diffraction, vibrating sample magnetometer and thermogravimetric analysis. The efficiency of the surface-modified MNPs for the collection of oil spills in the presence of an external magnetic field was evaluated by taking different ratios of MNPs:crude oil. From the analysis of the results, we found that the APH-MNPs particles have higher efficiency in the collection of heavy crude oil than the corresponding APC-MNPs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA